Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Bone Rep ; 21: 101770, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38736771

RESUMEN

Purpose: Dairy foods are nutritional sources of calcium, phosphorus, protein, and other nutrients that improve bone health. However, the effects of dairy consumption on bone biomarkers in the Japanese population remain unclear. This study explored the association between dairy consumption and bone biomarkers in Japanese adults. Methods: This cross-sectional study was conducted as part of the Iwaki Health Promotion Project in Aomori, Japan. In total, 1063 adults were included in the analysis. Bone turnover marker levels were measured in local citizens during their annual medical checkups. The calcaneus osteo sono assessment index (OSI) was calculated using a quantitative ultrasound technique. The dietary intake of foods and nutrients was estimated using a food frequency questionnaire. Linear regression models were established using dairy consumption and bone biomarkers with adjustments. Statistic significance was considered by P < 0.05. Results: In multivariate models, the tartrate-resistant acid phosphatase 5b and parathyroid hormone concentrations were inversely associated with dietary dairy consumption after adjusting for age and sex. The undercarboxylated osteocalcin, a procollagen type I N-terminal peptide to bone alkaline phosphatase ratio, and OSI were the directly associated with dairy consumption in multivariate models with adjustment. Conclusions: Dairy consumption is partially associated with bone turnover biomarkers and OSI in adult Japanese participants. Habitual consumption of dairy foods may contribute to the nutritional supplementation for maintaining bone health, including turnover and structure. Clinical trial registry number and website where it was obtained: The Japanese Clinical Trials Registry (UMIN000040459), https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000046175.

2.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474243

RESUMEN

GCN1 is recognized as a factor that is essential for the activation of GCN2, which is a sensor of amino acid starvation. This function is evolutionarily conserved from yeast to higher eukaryotes. However, recent studies have revealed non-canonical functions of GCN1 that are independent of GCN2, such as its participation in cell proliferation, apoptosis, and the immune response, beyond the borders of species. Although it is known that GCN1 and GCN2 interact with ribosomes to accomplish amino acid starvation sensing, recent studies have reported that GCN1 binds to disomes (i.e., ribosomes that collide each other), thereby regulating both the co-translational quality control and stress response. We propose that GCN1 regulates ribosome-mediated signaling by dynamically changing its partners among RWD domain-possessing proteins via unknown mechanisms. We recently demonstrated that GCN1 is essential for cell proliferation and whole-body energy regulation in mice. However, the manner in which ribosome-initiated signaling via GCN1 is related to various physiological functions warrants clarification. GCN1-mediated mechanisms and its interaction with other quality control and stress response signals should be important for proteostasis during aging and neurodegenerative diseases, and may be targeted for drug development.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Animales , Humanos , Ratones , Aminoácidos/metabolismo , Homeostasis , Factores de Elongación de Péptidos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Transactivadores/metabolismo
4.
Ann Surg Oncol ; 30(12): 7612-7623, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37548833

RESUMEN

BACKGROUND: Extramural vascular invasion (EMVI) and tumor deposits (TD) are poor prognostic factors in rectal cancer (RC), especially when resistant to neoadjuvant chemotherapy (NAC). We aimed to define differential expression in NAC responders and non-responders with concomitant EMVI and TD. METHODS: From 52 RC surgical patients, post-NAC resected specimens were extracted, comprising two groups: cases with residual EMVI and TD (NAC-resistant) and cases without (NAC-effective). Proteomic analysis was conducted to define differential protein expression in the two groups. To validate the findings, immunohistochemistry was performed in another cohort that included 58 RC surgical patients. Based on the findings, chemosensitivity and prognosis were compared. RESULTS: The NAC-resistant group was associated with a lower 3-year disease-free survival rate than the NAC-effective group (p = 0.041). Discriminative proteins in the NAC-resistant group were highly associated with the sulfur metabolism pathway. Among these pathway constituents, selenium-binding protein 1 (SELENBP1) expression in the NAC-resistant group decreased to less than one-third of that of the NAC-effective group. Immunohistochemistry in another RC cohort consistently validated the relationship between decreased SELENBP1 and poorer NAC sensitivity, in both pre-NAC biopsy and post-NAC surgery specimens. Furthermore, decrease in SELENBP1 was associated with a lower 3-year disease-free survival rate (p = 0.047). CONCLUSIONS: We defined one of the differentially expressed proteins in NAC responders and non-responders, concomitant with EMVI and TD. SELENBP1 was suspected to contribute to NAC resistance and poor prognosis in RC.


Asunto(s)
Terapia Neoadyuvante , Neoplasias del Recto , Humanos , Proteómica , Neoplasias del Recto/tratamiento farmacológico , Neoplasias del Recto/cirugía , Neoplasias del Recto/patología , Pronóstico , Supervivencia sin Enfermedad , Invasividad Neoplásica/patología , Estudios Retrospectivos
5.
Sci Rep ; 13(1): 8802, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258593

RESUMEN

High doses of ionizing radiation (IR) exposure can lead to the development of severe acute radiation syndrome with bone marrow failure. Defining risk factors that predict adverse events is a critical mission to guide patient selection for personalized treatment protocols. Since non-hematopoietic stem cells act as feeder cells in the niche and their secreted lipids may regulate hematopoietic stem cells, we focused on non-hematopoietic stem cells and aimed to discover biomarkers that can assess radiation exposure from their secreted lipids. Bone marrow stromal cells (BMSCs) and osteoblast differentiation-inducing cells (ODICs) isolated from mouse femurs were exposed to lethal doses of IR and the proteomic differences between BMSC and ODIC cell layers were compared. We observed an increased Nrf2-mediated oxidative stress response and IL6 expression in ODICs and decreased expression of mitochondrial proteins in BMSCs. To elucidate secreted factors, lipidomics of the cultures were profiled; the relevant lipids distinguishing IR-exposed and control groups of BMSC were acyl-acyl phosphatidylcholine (PC aa C34:1 and PC aa C34:4), lysophosphatidylcholine (lyso-PC a C18:0 and lyso PC a C17:0) and sphingomyelin (SM C20:2). These analyses suggest that certain lipids are candidate markers for the toxic effects of IR.


Asunto(s)
Lipidómica , Proteómica , Ratones , Animales , Células de la Médula Ósea , Radiación Ionizante , Lípidos
6.
BBA Adv ; 3: 100092, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250100

RESUMEN

Glycation, caused by reactive dicarbonyls, plays a role in various diseases by forming advanced glycation end products. In live cells, reactive dicarbonyls such as glyoxal (GO) and methylglyoxal (MGO) are produced during cell metabolism, and these should be removed consistently. However, the dicarbonyl metabolic system in the mitochondria remains unclear. It has been speculated that the mammalian mitochondrial protein ES1 is a homolog of bacterial elbB possessing glyoxalase III (GLO3) activity. Therefore, in this study, to investigate ES1 functions and GLO3 activity, we generated ES1-knockout (KO) mice and recombinant mouse ES1 protein and investigated the biochemical and histological analyses. In the mitochondrial fraction obtained from ES1-KO mouse brains, the GO metabolism and cytochrome c oxidase activity were significantly lower than those in the mitochondrial fraction obtained from wildtype (WT) mouse brains. However, the morphological features of the mitochondria did not change noticeably in the ES1-KO mouse brains compared with those in the WT mouse brains. The mitochondrial proteome analysis showed that the MGO degradation III pathway and oxidative phosphorylation-related proteins were increased. These should be the response to the reduced GO metabolism caused by ES1 deletion to compensate for the dicarbonyl metabolism and damaged cytochrome c oxidase by elevated GO. Recombinant mouse ES1 protein exhibited catalytic activity of converting GO to glycolic acid. These results indicate that ES1 possesses GLO3 activity and modulates the metabolism of GO in the mitochondria. To our knowledge, this is the first study to show a novel metabolic pathway for reactive dicarbonyls in mitochondria.

7.
Curr Res Transl Med ; 71(1): 103367, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36446162

RESUMEN

BACKGROUND: Since dementia is preventable with early interventions, biomarkers that assist in diagnosing early stages of dementia, such as mild cognitive impairment (MCI), are urgently needed. METHODS: Multiomics analysis of amnestic MCI (aMCI) peripheral blood (n = 25) was performed covering the transcriptome, microRNA, proteome, and metabolome. Validation analysis for microRNAs was conducted in an independent cohort (n = 12). Artificial intelligence was used to identify the most important features for predicting aMCI. FINDINGS: We found that hsa-miR-4455 is the best biomarker in all omics analyses. The diagnostic index taking a ratio of hsa-miR-4455 to hsa-let-7b-3p predicted aMCI patients against healthy subjects with 97% overall accuracy. An integrated review of multiomics data suggested that a subset of T cells and the GCN (general control nonderepressible) pathway are associated with aMCI. INTERPRETATION: The multiomics approach has enabled aMCI biomarkers with high specificity and illuminated the accompanying changes in peripheral blood. Future large-scale studies are necessary to validate candidate biomarkers for clinical use.


Asunto(s)
Disfunción Cognitiva , Demencia , MicroARNs , Humanos , Inteligencia Artificial , Multiómica , Progresión de la Enfermedad , Pruebas Neuropsicológicas , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/genética , Disfunción Cognitiva/psicología , Biomarcadores
8.
Mol Biol Rep ; 50(1): 531-540, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36352178

RESUMEN

BACKGROUND: Carbonyl reductase 1 (CBR1) is a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductase with broad substrate specificity. CBR1 catalyzes the reduction of numerous carbonyl compounds, including quinones, prostaglandins, menadione, and multiple xenobiotics, while also participating in various cellular processes, such as carcinogenesis, apoptosis, signal transduction, and drug resistance. In this study, we aimed to generate transgenic mice overexpressing mouse Cbr1 (mCbr1), characterize the mCbr1 expression in different organs, and identify changes in protein expression patterns. METHODS AND RESULTS: To facilitate a deeper understanding of the functions of CBR1, we generated transgenic mice overexpressing CBR1 throughout the body. These transgenic mice overexpress 3xFLAG-tagged mCbr1 (3xFLAG-mCbr1) under the CAG promoter. Two lines of transgenic mice were generated, one with 3xFLAG-mCbr1 expression in multiple tissues, and the other, with specific expression of 3xFLAG-mCbr1 in the heart. Pathway and network analysis using transgenic mouse hearts identified 73 proteins with levels of expression correlating with mCbr1 overexpression. The expression of voltage-gated anion channels, which may be directly related to calcium ion-related myocardial contraction, was also upregulated. CONCLUSION: mCbr1 transgenic mice may be useful for further in vivo analyses of the molecular mechanisms regulated by Cbr1; such analyses will provide a better understanding of its effects on carcinogenesis and cardiotoxicity of certain cancer drugs.


Asunto(s)
Antineoplásicos , Carbonil Reductasa (NADPH) , Ratones , Animales , Ratones Transgénicos , Antineoplásicos/farmacología , Apoptosis , Carcinogénesis , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo
9.
Antioxidants (Basel) ; 11(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36552593

RESUMEN

The recently discovered high-level natural background radiation area (HBRA) of Mamuju in Indonesia provides a unique opportunity to study the biological effects of chronic low-dose radiation exposure on a human population. The mean total effective dose in the HBRA was approximately 69.6 mSv y-1 (range: 47.1 to 115.2 mSv y-1), based on a re-evaluation of the individual radiation exposure dose; therefore, proteomic analyses of serum components and oxidative modification profiling of residents living in the HBRA were reconducted using liquid chromatography-tandem mass spectrometry. The analysis of the oxidative modification sequences of human serum albumin revealed significant moderate correlations between the radiation dose and the modification of 12 sequences, especially the 111th methionine, 162nd tyrosine, 356th tyrosine, and 470th methionine residues. In addition, a dose-dependent variation in 15 proteins of the serum components was detected in the serum of residents exposed to chronic low-dose radiation. These findings suggest that the alterations in the expression of specific proteins and the oxidative modification responses of serum albumin found in exposed humans may be important indicators for considering the effects of chronic low-dose radiation exposure on living organisms, implying their potential utility as biomarkers of radiation dose estimation.

10.
Antioxidants (Basel) ; 11(9)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36139779

RESUMEN

The details of the dose-dependent response of serum proteins exposed to ionizing radiation, especially the oxidative modification response in amino acid sequences of albumin, the most abundant protein, are unknown. Thus, a proteomic analysis of the serum components from mice exposed to total body X-irradiation (TBI) ranging from 0.5 Gy to 3.0 Gy was conducted using LC-MS/MS. The analysis of oxidative modification sequences of albumin (mOMSA) in TBI mouse serum revealed significant moderate or strong correlations between the X-irradiation exposure dose and modification of 11 mOMSAs (especially the 97th, 267th and 499th lysine residues, 159th methionine residue and 287th tyrosine residues). In the case of X-irradiation of serum alone, significant correlations were also found in the 14 mOMSAs. In addition, a dose-dependent variation in six proteins (Angiotensinogen, Odorant-binding protein 1a, Serine protease inhibitor A3K, Serum paraoxonase/arylesterase 1, Prothrombin and Epidermal growth factor receptor) was detected in the serum of mice exposed to TBI. These findings suggest the possibility that the protein variation and serum albumin oxidative modification responses found in exposed individuals are important indicators for considering the effects of radiation on living organisms, along with DNA damage, and suggests their possible application as biomarkers of radiation dose estimation.

11.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955572

RESUMEN

Sulforaphane (SFN) is a potent activator of the transcriptional factor, Nuclear Factor Erythroid 2 (NF-E2)-Related factor 2 (NRF2). SFN and its precursor, glucoraphanin (sulforaphane glucosinolate, SGS), have been shown to ameliorate cognitive function in clinical trials and in vivo studies. However, the effects of SGS on age-related cognitive decline in Senescence-Accelerated Mouse Prone 8 (SAMP8) is unknown. In this study, we determined the preventive potential of SGS on age-related cognitive decline. One-month old SAMP8 mice or control SAM resistance 1 (SAMR1) mice were fed an ad libitum diet with or without SGS-containing broccoli sprout powder (0.3% w/w SGS in diet) until 13 months of age. SGS significantly improved long-term memory in SAMP8 at 12 months of age. Interestingly, SGS increased hippocampal mRNA and protein levels of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1α) and mitochondrial transcription factor A (TFAM), which are master regulators of mitochondrial biogenesis, both in SAMR1 and SAMP8 at 13 months of age. Furthermore, mRNAs for nuclear respiratory factor-1 (NRF-1) and mitochondrial DNA-encoded respiratory complex enzymes, but not mitochondrial DNA itself, were increased by SGS in SAMP8 mice. These results suggest that SGS prevents age-related cognitive decline by maintaining mitochondrial function in senescence-accelerated mice.


Asunto(s)
Disfunción Cognitiva , Biogénesis de Organelos , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , ADN/metabolismo , Expresión Génica , Hipocampo/metabolismo , Isotiocianatos , Ratones , Sulfóxidos
12.
J Gastroenterol ; 57(10): 798-811, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35780404

RESUMEN

BACKGROUND: Evolutionary cancer has a supply mechanism to satisfy higher energy demands even in poor-nutrient conditions. Metabolic reprogramming is essential to supply sufficient energy. The relationship between metabolic reprogramming and the clinical course of pancreatic ductal adenocarcinoma (PDAC) remains unclear. We aimed to clarify the differences in metabolic status among PDAC patients. METHODS: We collected clinical data from 128 cases of resectable PDAC patients undergoing surgery. Sixty-three resected tissues, 15 tissues from the low carbohydrate antigen 19-9 (CA19-9), 38-100 U/mL, and high CA19-9, > 500 U/mL groups, and 33 non-tumor control parts, were subjected to tandem mass spectrometry workflow to systematically explore metabolic status. Clinical and proteomic data were compared on the most used PDAC biomarker, preoperative CA19-9 value. RESULTS: Higher CA19-9 levels were clearly associated with higher early recurrence (p < 0.001), decreased RFS (p < 0.001), and decreased DSS (p = 0.025). From proteomic analysis, we discovered that cancer evolution-related as well as various metabolism-related pathways were more notable in the high group. Using resected tissue immunohistochemical staining, we learned that high CA19-9 PDAC demonstrated aerobic glycolysis enhancement, yet no decrease in protein synthesis. We found a heterogeneity of various metabolic processes, including carbohydrates, proteins, amino acids, lipids, and nucleic acids, between the low and the high groups, suggesting differences in metabolic adaptive capacity. CONCLUSIONS: Our study found metabolic adaptation differences among PDAC cases, pertaining to both cancer evolution and the prognosis. CA19-9 can help estimate the metabolic adaptive capacity of energy supply for PDAC evolution.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Ácidos Nucleicos , Neoplasias Pancreáticas , Adenocarcinoma/patología , Aminoácidos , Biomarcadores de Tumor , Antígeno CA-19-9 , Carbohidratos , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/cirugía , Humanos , Lípidos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/cirugía , Pronóstico , Proteómica , Estudios Retrospectivos , Neoplasias Pancreáticas
13.
Free Radic Biol Med ; 184: 196-207, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35447332

RESUMEN

It has been considered difficult to detect the biological effects of low-dose radiation exposure below approximately 100 mSv in humans. Serum proteomic analysis and oxidative modification profiling were conducted with blood samples collected from residents of a newly discovered high-level natural background radiation area (annual effective dose approximately 50 mSv y-1) and normal-level area (1.22 mSv y-1) in Mamuju, Indonesia, where many people have been living for generations. Dose-dependent oxidative modifications in amino acid sequences of human serum albumin, especially the 162nd and 356th tyrosine residues and 111th and 470th methionine residues, were found. None of these findings have been reported in humans exposed to chronic low-dose radiation. It can be used as a biomarker not only for the assessment of the presence or absence of radiation exposure but also for dose prediction in living organisms for chronic radiation. These results suggest that traces of radiation exposure are recorded in serum albumin and that there is a possibility of a new methodology that can evaluate biological responses below 100 mSv.


Asunto(s)
Proteómica , Exposición a la Radiación , Radiación de Fondo , Humanos , Dosis de Radiación
14.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35328622

RESUMEN

GCN1 is an evolutionarily-conserved ribosome-binding protein that mediates the amino acid starvation response as well as the ribotoxic stress response. We previously demonstrated that Gcn1 mutant mice lacking the GCN2-binding domain suffer from growth retardation and postnatal lethality via GCN2-independent mechanisms, while Gcn1-null mice die early in embryonic development. In this study, we explored the role of GCN1 in adult mice by generating tamoxifen-inducible conditional knockout (CKO) mice. Unexpectedly, the Gcn1 CKO mice showed body weight loss during tamoxifen treatment, which gradually recovered following its cessation. They also showed decreases in liver weight, hepatic glycogen and lipid contents, blood glucose and non-esterified fatty acids, and visceral white adipose tissue weight with no changes in food intake and viability. A decrease of serum VLDL suggested that hepatic lipid supply to the peripheral tissues was primarily impaired. Liver proteomic analysis revealed the downregulation of mitochondrial ß-oxidation that accompanied increases of peroxisomal ß-oxidation and aerobic glucose catabolism that maintain ATP levels. These findings show the involvement of GCN1 in hepatic lipid metabolism during tamoxifen treatment in adult mice.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Animales , Lípidos , Hígado/metabolismo , Glucógeno Hepático/metabolismo , Ratones , Ratones Noqueados , Factores de Elongación de Péptidos/metabolismo , Proteínas Serina-Treonina Quinasas , Proteómica , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tamoxifeno/efectos adversos , Tamoxifeno/metabolismo , Transactivadores/metabolismo , Pérdida de Peso
15.
Sci Rep ; 11(1): 21197, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34707166

RESUMEN

Perineural invasion (PNI) is a typical poor prognostic factor in pancreatic ductal adenocarcinoma (PDAC). The mechanisms linking PNI to poor prognosis remain unclear. This study aimed to clarify what changes occurred alongside PNI in PDAC. A 128-patient cohort undergoing surgery for early-stage PDAC was evaluated. Subdivided into two groups, according to pathological state, a pancreatic nerve invasion (ne) score of less than three (from none to moderate invasion) was designated as the low-grade ne group. The high-grade (marked invasion) ne group (74 cases, 57.8%) showed a higher incidence of lymphatic metastasis (P = 0.002), a higher incidence of early recurrence (P = 0.004), decreased RFS (P < 0.001), and decreased DSS (P < 0.001). The severity of lymphatic (r = 0.440, P = 0.042) and venous (r = 0.610, P = 0.002) invasions was positively correlated with the ne score. Tumors having abundant stroma often displayed severe ne. Proteomics identified eukaryotic initiation factor 2 (EIF2) signaling as the most significantly enriched pathway in high-grade ne PDAC. Additionally, EIF2 signaling-related ribosome proteins decreased according to severity. Results showed that PNI is linked with lymphatic and vascular invasion in early-stage PDAC. Furthermore, the dysregulation of proteostasis and ribosome biogenesis can yield a difference in PNI severity.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Neoplasias Pancreáticas/metabolismo , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Metástasis Linfática , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Neoplasias Pancreáticas/patología , Proteoma/genética , Proteoma/metabolismo , Proteínas Ribosómicas/metabolismo , Transducción de Señal
16.
Metabolites ; 11(5)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068294

RESUMEN

For large-scale metabolomics, such as in cohort studies, normalization protocols using quality control (QC) samples have been established when using data from gas chromatography and liquid chromatography coupled to mass spectrometry. However, normalization protocols have not been established for capillary electrophoresis-mass spectrometry metabolomics. In this study, we performed metabolome analysis of 314 human plasma samples using capillary electrophoresis-mass spectrometry. QC samples were analyzed every 10 samples. The results of principal component analysis for the metabolome data from only the QC samples showed variations caused by capillary replacement in the first principal component score and linear variation with continuous measurement in the second principal component score. Correlation analysis between diagnostic blood tests and plasma metabolites normalized by the QC samples was performed for samples from 188 healthy subjects who participated in a Japanese population study. Five highly correlated pairs were identified, including two previously unidentified pairs in normal healthy subjects of blood urea nitrogen and guanidinosuccinic acid, and gamma-glutamyl transferase and cysteine glutathione disulfide. These results confirmed the validity of normalization protocols in capillary electrophoresis-mass spectrometry using large-scale metabolomics and comprehensive analysis.

17.
Carbohydr Polym ; 251: 116989, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33142561

RESUMEN

Hyaluronan specifically binds to aggrecan globular domain 1, which is often referred to as just hyaluronan binding protein (HABP), however, the hyaluronan carbohydrate structure recognized by HABP had not been studied in detail. The aim of the present study was to investigate the important structure of hyaluronan for binding to HABP. We prepared hybrid oligosaccharides from hyaluronan and chondroitin, with or without modification of the reducing or non-reducing terminus, as tools to determine the preferred structure of hyaluronan for binding to the HABP by a competitive ELISA-like method. The non-reducing terminal structure was critical, especially, the glucuronic acid (GlcUA) and N-acetylglucosamine (GlcNAc) of the hyaluronan-unit are essential for complete HABP binding activity, and for any HABP binding activity, respectively. It is possible to replace GlcUAß-1-3GlcNAc of the internal disaccharide units with GlcUAß-1-3N-acetylgalactosamine (GalNAc), if the chain length is decasaccharide or larger.


Asunto(s)
Receptores de Hialuranos/química , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/química , Ácido Hialurónico/metabolismo , Agrecanos/química , Agrecanos/metabolismo , Animales , Sitios de Unión , Secuencia de Carbohidratos , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/metabolismo , Condroitín/química , Condroitín/metabolismo , Glicosilación , Humanos , Oligosacáridos/química , Oligosacáridos/metabolismo , Unión Proteica
18.
Mol Clin Oncol ; 13(6): 70, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33005404

RESUMEN

Breast cancer is the second most common cancer in the world based on incidence, reaching more than 2 million new cases in 2018, while continuing to increase. Invasive ductal carcinoma is the most common type of this cancer, making up approximately 70-80% of all breast cancer diagnoses. In particular, the type of breast cancer overexpressing human epidermal growth factor receptor 2 (HER2) has potential of strong proliferation, migration and invasion and early treatment is necessary. The authors identified and studied a single patient displaying complete therapeutic resistance to monoclonal anti-HER2 antibody therapy, chemotherapy and radiotherapy. A patient who exhibited resistance to postoperative adjuvant therapy after mastectomy was selected from HER2-positive breast cancer, and this patient had the grade of T4bN2aM0, Stage IIIB. The patient samples, blood serum and cancer tissue, were analyzed by metabolome and immunostaining technique, respectively. The characteristics of peripheral blood serum and solid tumor were investigated, aiming to find new serum biomarker(s) using the metabolomics technique. A correlation between the appearance of HER2-positive cancer tissue and serum concentration of the sphingomyelin family was found. In addition, HER2-positive tumor tissue in both the primary and recurrent cancer express the sphingomyelinase. These results suggest that sphingomyelins from this cancer tissue leads to therapy resistance, induction of invasion and strong proliferation.

19.
Int J Radiat Biol ; 96(9): 1125-1134, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32602419

RESUMEN

PURPOSE: The thrombopoietin receptor agonist romiplostim (RP) is a therapeutic agent for immune thrombocytopenia that can achieve complete survival in mice exposed to a lethal dose of ionizing radiation. The estimated mechanism of the radio-protective/mitigative effects of RP has been proposed; however, the detailed mechanism of action remains unclear. This study aimed to elucidate the mechanism of the radio-protective/mitigative effects of RP, the fluctuation of protein in the blood was analyzed by proteomics. MATERIALS AND METHODS: Eight-week-old female C57BL/6J mice were randomly divided into 5 groups; control at day 0, total-body irradiation (TBI) groups at day 10 and day 18, and TBI plus RP groups at day 10 and day18, consisting of 3 mice per group, and subjected to TBI with 7 Gy of 137Cs γ-rays at a dose rate of 0.74 Gy/min. RP was administered intraperitoneally to mice at a dose of 50 µg/kg once daily for 3 days starting 2 hours after TBI. On day 10 and day 18 after TBI, serum collected from each mouse was analyzed by liquid chromatography tandem mass spectrometry. RESULTS: Nine proteins were identified by proteomics methods from 269 analyzed proteins detected in mice exposed to a lethal dose of TBI: keratin, type II cytoskeletal 1 (KRT1), fructose-1, 6-bisphosphatase (FBP1), cytosolic 10-formyltetrahydrofolate dehydrogenase (ALDH1L1), peptidyl-prolyl cis-trans isomerase A (PPIA), glycine N-methyltransferase (GNMT), glutathione S-transferase Mu 1 (GSTM1), regucalcin (RGN), fructose-bisphosphate aldolase B (ALDOB) and betain-homocysteine S-methyltransferase 1 (BHMT). On the 10th day after TBI, KRT1 was significantly increased (p < 0.05) by 4.26-fold compared to the control group in the TBI group and significantly inhibited in the TBI plus RP group (p < 0.05). Similarly, the expression levels of other 8 proteins detected at 18th day after TBI were significantly increased by 4.29 to 27.44-fold in the TBI group, but significantly decreased in the TBI plus RP group compared to the TBI group, respectively. CONCLUSION: Nine proteins were identified by proteomics methods from 269 analyzed proteins detected in mice exposed to a lethal dose of TBI. These proteins are also expected to be indicators of the damage induced by high-dose radiation.


Asunto(s)
Sangre/metabolismo , Sangre/efectos de la radiación , Proteómica , Protectores contra Radiación/farmacología , Receptores de Trombopoyetina/agonistas , Proteínas Recombinantes de Fusión/farmacología , Trombopoyetina/farmacología , Irradiación Corporal Total/efectos adversos , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Receptores Fc
20.
J Am Heart Assoc ; 9(12): e015616, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32495720

RESUMEN

Background Although PAR-1 (protease-activated receptor-1) exerts important functions in the pathophysiology of the cardiovascular system, the role of PAR-1 signaling in heart failure development remains largely unknown. We tested the hypothesis that PAR-1 signaling inhibition has protective effects on the progression of cardiac remodeling induced by chronic renin-angiotensin system activation using renin-overexpressing hypertensive (Ren-Tg) mice. Methods and Results We treated 12- to 16-week-old male wild-type (WT) mice and Ren-Tg mice with continuous subcutaneous infusion of the PAR-1 antagonist SCH79797 or vehicle for 4 weeks. The thicknesses of interventricular septum and the left ventricular posterior wall were greater in Ren-Tg mice than in WT mice, and SCH79797 treatment significantly decreased these thicknesses in Ren-Tg mice. The cardiac fibrosis area and monocyte/macrophage deposition were greater in Ren-Tg mice than in WT mice, and both conditions were attenuated by SCH79797 treatment. Cardiac mRNA expression levels of PAR-1, TNF-α (tumor necrosis factor-α), TGF-ß1 (transforming growth factor-ß1), and COL3A1 (collagen type 3 α1 chain) and the ratio of ß-myosin heavy chain (ß-MHC) to α-MHC were all greater in Ren-Tg mice than in WT mice; SCH79797 treatment attenuated these increases in Ren-Tg mice. Prothrombin fragment 1+2 concentration and factor Xa in plasma were greater in Ren-Tg mice than in WT mice, and both conditions were unaffected by SCH79797 treatment. In isolated cardiac fibroblasts, both thrombin and factor Xa enhanced ERK1/2 (extracellular signal-regulated kinase 1/2) phosphorylation, and SCH79797 pretreatment abolished this enhancement. Furthermore, gene expression of PAR-1, TGF-ß1, and COL3A1 were enhanced by factor Xa, and all were inhibited by SCH79797. Conclusions The results indicate that PAR-1 signaling is involved in cardiac remodeling induced by renin-angiotensin system activation, which may provide a novel therapeutic target for heart failure.


Asunto(s)
Hipertensión/tratamiento farmacológico , Hipertrofia Ventricular Izquierda/prevención & control , Miocardio/metabolismo , Pirroles/farmacología , Quinazolinas/farmacología , Receptor PAR-1/antagonistas & inhibidores , Renina/metabolismo , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Animales , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibrosis , Células HEK293 , Humanos , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/fisiopatología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Mediadores de Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocardio/patología , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Renina/genética , Transducción de Señal , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...